Real Options – Introduction
Summary

I. Why should CEOs worry about “real” options – what are they?
II. Examples in Pharma, Oil & Gas, Semiconductors, Energy, Aircraft
III. Current trends; quotes from Copeland, Myers, et al.
IV. What are differences between NPV analysis, Decision Analysis, and Real Option Analysis? A quick overview.
 – Risk adjusted discount rate, twin security
 – Replicating portfolio and arbitrage arguments
V. Methods to calculate option value
 – Pros and cons of each approach
 – No discussion of stochastic processes or stochastic control theory

Sources: Copeland, Trigeorgis, Schwartz, Amram, Luenberger, Myers
Why should CEOs worry about “real” options

- The right, but not the obligation, to take an action at a pre-determined cost (exercise price), for a pre-determined period of time (time to expiration). Applies to strategic, as well as financial options.
 - Defer, expand, contract, abandon a project over time

- NPV analysis underestimates project value!
 - Every project has embedded real options

- CEOs will miss opportunities if they ignore option value
 - In bidding contests, a bidder needs to know full value of investment opportunity, for itself and for other bidders
 - In screening investment opportunities, low risk projects incorrectly get precedence over higher flexibility projects with increased risk.
 - CEOs intuitively understand value of flexibility – but there is a disconnect with CFOs that pre-dominantly use static DCF analyses
What is real about “real” options

- **Financial options can be valued using arbitrage arguments**
 - Replicate pay-offs using dynamic portfolio of traded underlying asset(s) and risk-free bond
 - Since portfolio pay-offs are equivalent to option pay-offs in each state of nature, price is the same as well

- **Real options have two unique characteristics**
 - Some or all of the underlying asset(s) are not traded (priced)
 - Underlying assets might, or might not have correlation with other traded assets

- **Real Options Analysis (ROA) generally used for strategic decision making, traditional option analysis most used in trading**
 - ROA provides plan of action contingent on future events
What is difficult about real options

- **Assumptions B&S → SIMPLE**
 - European – no early exercise
 - One source of uncertainty
 - No dividends
 - General Brownian Motion
 - Constant variance, exercise price

- **Real options → COMPLEX**
 - American – early exercise
 - Multiple risk factors
 - Convenience yield, Carrying costs
 - Mean reversion, etc.
 - Stochastic interest rates
 - Incomplete markets
 - Insufficient data
 - Transaction costs, liquidity

- **Probability distribution of price:**
 - *Expected (estimated), or*
 - *Risk neutral (Martingale)*

- **Time value of option dependent on:**
 - *Distribution of underlying*
 - *Time to expiration*
Types of options on projects/investments

- Defer an investment for later, contingent on new information
 - An American call option

- Expand, extend the life of a project
 - A portfolio of American calls

- Scale back, abandon a project
 - A portfolio of American puts

- Switch between two fuel types, two modes of operation
 - A portfolio of American calls and puts
 - Trade-off the cost of flexibility versus the value of option to switch

- Invest in phase II, contingent on investment in phase I
 - Compound options
Drivers of real option value, relevance of ROA

- Increased project uncertainty
 - Chance options in-the-money
- Increased room for management flexibility (modularity)
- NPV without flexibility close to 0

- Longer time to expiration
 - Investment horizon
- Increased interest rates
 - Option to defer, contract more valuable
- Less competition (game theory)
 - Option to defer more valuable

Relevance of ROA

<table>
<thead>
<tr>
<th>Likelihood for new info</th>
<th>Uncertainty</th>
<th>Ability to respond</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Moderate</td>
<td>Low</td>
</tr>
<tr>
<td>H</td>
<td>High</td>
<td>Moderate</td>
</tr>
</tbody>
</table>
Simple example of valuing a startup

BUSINESS IDEA:
- Costs are known for sure:
 - Product development: $4M (2y)
 - Launch costs: $12M (after 2y)
- Expected sales: $6M per year
 - Value established firm: $22M (revenue multiple of 3.66)

STATIC NPV:
- PV development (6%) $3.8M
- PV launch (6%) $10.9M
- PV business (21%) $14.5M

Net Present Value: ($200,000)
(DCF analysis ignores flexibility)

A FINANCIAL CALL OPTION
- Option price
- Exercise price (K)
- Exercise date
- Current stock price (S)
- Return standard deviation

OPTION TO LAUNCH (EUROPEAN)
- PV of development costs
- Cost of launch (K)
- Launch date
- Current expectation of value (S)
- Firm value volatility
Simple example of valuing a startup (contd.)

- **Launch decision is call option**
 - Product development cost is price of this option
 - Launch if in 2 years:
 PV firm > Launch costs

- **Black & Scholes:**
 - Cost of launch (K): $12.0M
 - Firm value (S): $14.5M
 - Firm volatility: 40%
 - Risk free rate: 6%
 - OPTION VALUE: $5.0M

- **ROA analysis:**
 $5M - $3.8M = $1,200,000

- **Add option to abandon project**
 - American; solve numerically
 - Include both options in analysis

- **Value of options: $5.6M**

- **ROA analysis = $1,750,000**

- **Determine firm volatility using simulation of static DCF model (without management flexibility)**
 - Volatility of firm is not the same as volatility of underlying
 - Examples of underlying: price, market size, etc…
Example in Aircraft sales – embedded options

- Airbus and Boeing compete for long term orders in a cyclical capacity driven industry
 - Aggressive market share targets to recoup aircraft model costs
 - Time lag between orders and delivery

- Traditional “approach”: the more purchase rights (options) handed out (at a certain exercise price) the more orders follow …
 - These options are more valuable to airlines with higher volatilities
 - Segment market – discriminate smaller more volatile airlines
 - Also control time to expiration

- Other practical issues to value embedded options:
 - Mean reversion, lead time after exercise
 - Yield on each aircraft (analogous to dividends)
 - Swap between aircraft types: switching options
Compound (rainbow) options

- Large capital, R&D, Marketing outlays upon revelation of new information in each project phase
 - Semi-conductor manufacturing
 - Pharmaceuticals
 - Oil & gas

II. Examples

- Aggressive
 - Commercialization
 - Production

- Defensive
 - Commercialization
 - Production

Cost
Market size
...

Design
R&D
Exploration

• Design
• R&D
• Exploration

• Build
• FDA approval
• Build wells

Fully Commit

• Build
• FDA approval
• Build wells

Fully Commit

Abandon

Abandon project

D

D

Current

+1 year

+2 years
Examples in Gas & Power

VALUING A POWERPLANT
- Gas powerplant can be turned on and off based on demand
- Two stochastic price processes; spread is what matters most
 - Electricity demand varies with weather, etc.
 - Fuel cost varies with gas-supply, related to local storage and transportation capacity
- Powerplant is series of calls; switch on when Price > MC
 - If two fuel types: incorporates a series of switching options

VIRTUAL STORAGE
- Sell the ability to store gas when prices are low
- One stochastic process: gas price (mean reversion?)
- No simple solution
 - Path dependency
 - Constraints: empty and full
- Value using stochastic dynamic programming approach
 - Storage empty at end of lease
 - DP works backward in time
 - Storage empty at start of lease
Quotes…

- “It took decades for DCF analysis to replace payback period analysis, the same will happen for real option analysis”, Copeland (2001)
- “Airbus management was slowly persuaded of competitive advantages of valuation of embedded options in contracts”, Stonier (2001)
- “A key advantage of ROA is that it is a gradual improvement, inherently incorporating DCF analysis”, Antikarov (2001)
Developments in real option analysis

PAST
- Traded commodities
- Closed form solutions
- Single uncertainty
- Simple options
 - *Limited computer power*

CURRENT DEVELOPMENTS
- Market & private uncertainties
- Rainbow options
- Compound options
- Switching options
- Barrier options
- Look-back options
- Asian options
- Mean reversion, shocks
- Stochastic term structure
 - *Abundant computer power*
Option Valuation and Arbitrage

THE REPLICATING PORTFOLIO

- With flexibility:
 - Investment: $115k
 - Period-1 CFs: $170k, $65k
 (with equal probability)
 ⇒ Pay-out profile: $55k, $0

- One uncertainty ⇒ one security S:
 - Period-0 price: $20
 - Period-1 prices: $34, $13
 (Bank account B with return: \(r_f = 108\% \))

- The portfolio; S shares, B cash:
 \[
 \begin{align*}
 S \times 34 + B \times r_f &= 55k \\
 S \times 13 + B \times r_f &= 0
 \end{align*}
 \]
 \(\text{solve:} \)
 \[
 \begin{align*}
 S &= 2.6; \quad B = -31.5
 \end{align*}
 \]
 ⇒ \(PV_0 = S \times 20 - B \times 31.5 = 21k \)
 ⇒ \text{Implies that no arbitrage is possible}

RISK NEUTRAL PROBABILITIES

- Short cut method:
 - Security prices: \(P \)
 - Portfolio weights: \(w \)
 - Option payout:: \(p \)
 Set: \(P \times w = p \) ⇒ \(w = P^{-1} p \)

- State prices:
 - Portfolio value such that pay-out is $1 in one state, $0 in other states.
 - Price increased for “bad” states
 - Normalize with risk free rate:
 ⇒ \text{risk-neutral probabilities}

 \(PV_0 = \text{“E”}[CF_1]/r_f \)
 - Risk neutral expectation “E”
 - Use for any pay-off profile
NPV Analysis versus Decision Tree Analysis versus Replicating Portfolio Approach

NPV ANALYSIS (NO OPTIONS)
- Value traded asset using DCF:
 \[V_0 = E[CF_1] / R = $20 \] (e.g. stock)
- Back out risk adjusted discount rate \(R \) if \(V_0 \) is known (traded) \(\rightarrow R=118\% \)
 - Input likelihood of each \(CF_1 \) (state)
 - Use \(R \) to value perfectly correlated asset (not traded) \(\rightarrow PV_0=100k \)
- Alternatively use replicating portfolio approach: twin security and cash
 - Law of one price: same payouts in each state \(\Leftrightarrow \) same price \(\rightarrow PV_0 \)
- Subtract PV of investment of $115k
 \[NPV = PV_0 - $115k/r_f = $100k - $106k \]

DECISION TREE ANALYSIS OF OPTION
- Add option to react to new information before investment
 - Abandon in states where \(CF_1 < Investment \)
- Payout profile changes: due to downside protection
 \(\Rightarrow NPV = E[NCF] / R = $23k \)
 - Static \(R \) is wrong !!

\textit{DTA requires changing} \(R \) \textit{per node since risk level changes per node}
- Value using replicating portfolio:
 \(\Rightarrow NPV = $21k \) (see previous slide !)

\(\Rightarrow \) Total option value: $21k - -$6k = $27k
Example in Oil & Gas – *private uncertainty*

- **Risk neutral probabilities …**
 - Are determined from a no arbitrage condition on traded securities
 - Do not require subjective probabilities, or an assessment of expected return (!)
 - Can be used in multi-period setting

- **Incomplete markets …**
 - If no solution to: \(w = P^{-1} p \)
 - For example technology risk, or oil reserve risk

- **Solve with traditional DTA:**
 - Use private probabilities
 - If fully uncorrelated with market: use risk free rate (CAPM)

- **Exploration and Production**
 - Future oil prices, and total reserves are unknown

- **Build multi-dimensional lattice**
 - Two risk factors
 - Mixed real- and risk neutral probabilities for private and market risks respectively
 - Discount using risk-free rate

- **Mean reversion in oil-prices can easily be incorporated**
 - Parameters can be inferred from historical data, or traded securities (*Options and futures on oil*)
Closed form versus simulation

- **Black & Scholes** – closed form solution of Differential Equation
 - No early exercise, etc…
 - Many extensions; most need to be solved numerically

- **Trees and lattices**
 - Binomial, quadranomial, multi-dimensional
 - Lattice branches recombine; *computational tractability*

- **Finite differences**
 - Similar to lattice approach, but directly solves differential equation

- **Stochastic control. Dynamic Stochastic Programming**
 - Portfolio management; limit state space to wealth level